Planar graphs with girth at least 5 are (3, 5)-colorable

نویسندگان

  • Ilkyoo Choi
  • André Raspaud
چکیده

A graph is (d1, . . . , dr )-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr where themaximum degree of the graph induced by Vi is at most di for each i ∈ {1, . . . , r}. Let Gg denote the class of planar graphs with minimum cycle length at least g . We focus on graphs in G5 since for any d1 and d2, Montassier and Ochem constructed graphs in G4 that are not (d1, d2)-colorable. It is known that graphs inG5 are (2, 6)-colorable and (4, 4)colorable, but not all of them are (3, 1)-colorable. We prove that graphs in G5 are (3, 5)colorable, leaving two interesting questions open: (1) are graphs inG5 also (3, d2)-colorable for some d2 ∈ {2, 3, 4}? (2) are graphs in G5 indeed (d1, d2)-colorable for all d1 + d2 ≥ 8 where d2 ≥ d1 ≥ 1? © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Colorings: Non-Colorable Graphs and NP-Completeness

A graph G is (d1, . . . , dl)-colorable if the vertex set of G can be partitioned into subsets V1, . . . , Vl such that the graph G[Vi] induced by the vertices of Vi has maximum degree at most di for all 1 6 i 6 l. In this paper, we focus on complexity aspects of such colorings when l = 2, 3. More precisely, we prove that, for any fixed integers k, j, g with (k, j) 6= (0, 0) and g > 3, either e...

متن کامل

List coloring the square of sparse graphs with large degree

We consider the problem of coloring the squares of graphs of bounded maximum average degree, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbour receive different colors. Borodin et al. proved in 2004 and 2008 that the squares of planar graphs of girth at least seven and sufficiently large maximum degree ∆ are list (∆ + 1)-...

متن کامل

Injective colorings of planar graphs with few colors

An injective coloring of a graph is a vertex coloring where two vertices have distinct colors if a path of length two exists between them. In this paper some results on injective colorings of planar graphs with few colors are presented. We show that all planar graphs of girth ≥19 and maximum degree ∆ are injectively ∆-colorable. We also show that all planar graphs of girth ≥10 are injectively (...

متن کامل

Planar Graphs of Odd-girth at Least 9 Are Homomorphic to Petersen Graph

Let G be a graph and let c : V (G) → ({1,...,5} 2 ) be an assignment of 2-element subsets of the set {1, . . . , 5} to the vertices of G such that for every edge vw, the sets c(v) and c(w) are disjoint. We call such an assignment a (5, 2)-coloring. A graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph. The odd-girth of a graph G is the length of the shortest odd ...

متن کامل

Planar Graphs of Odd-Girth at Least 9 are Homomorphic to the Petersen Graph

Let G be a graph and let c : V (G) → ({1,...,5} 2 ) be an assignment of 2-element subsets of the set {1, . . . , 5} to the vertices of G such that for every edge vw, the sets c(v) and c(w) are disjoint. We call such an assignment a (5, 2)-coloring. A graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph. The odd-girth of a graph G is the length of the shortest odd ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 338  شماره 

صفحات  -

تاریخ انتشار 2015